Digital terrain modeling with the Chebyshev polynomials

نویسندگان

  • Igor V. Florinsky
  • A. N. Pankratov
چکیده

Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and algorithm based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejér summation. The method and algorithm are intended for DEM analytical treatment, such as, DEM global approximation, denoising, and generalization as well as computation of morphometric variables by analytical calculation of partial derivatives. To test the method and algorithm, we used a DEM of the Northern Andes including 230,880 points (the elevation matrix 480 × 481). DEMs were reconstructed with 480, 240, 120, 60, and 30 expansion coefficients. The first and second partial derivatives of elevation were analytically calculated from the reconstructed DEMs. Models of horizontal curvature (kh) were then computed with the derivatives. A set of elevation and kh maps related to different number of expansion coefficients well illustrates data generalization effects, denoising, and removal of artifacts contained in the original DEM. The test results demonstrated a good performance of the developed method and algorithm. They can be utilized as a universal tool for analytical treatment in digital terrain modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Segmentation of Ecg Signals through Chebyshev Polynomials

ECG (Electrocardiogram) signals originating from heart muscles, generate massive volume of digital data. They need to be compressed or approximated for efficient transmission and storage. ECG signal compression is traditionally performed in three ways: direct, transform and parameter extraction. Polynomial approximation which is a form of parameter extraction method, is employed here. This pape...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

Post-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques

In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.03960  شماره 

صفحات  -

تاریخ انتشار 2015